If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+6=39
We move all terms to the left:
5x^2+6-(39)=0
We add all the numbers together, and all the variables
5x^2-33=0
a = 5; b = 0; c = -33;
Δ = b2-4ac
Δ = 02-4·5·(-33)
Δ = 660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{660}=\sqrt{4*165}=\sqrt{4}*\sqrt{165}=2\sqrt{165}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{165}}{2*5}=\frac{0-2\sqrt{165}}{10} =-\frac{2\sqrt{165}}{10} =-\frac{\sqrt{165}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{165}}{2*5}=\frac{0+2\sqrt{165}}{10} =\frac{2\sqrt{165}}{10} =\frac{\sqrt{165}}{5} $
| 5(x-3)^2+6=39 | | x²-2x-34=0 | | 19-2x+5x=68 | | 8x=5=29;3 | | 6x+10=8-(x+14) | | 5x-3(2x+3)=12-(2x-5) | | 8x+35=6x+45 | | 1/5-1/2v=-1/7 | | P(x)=2x3-7x+3 | | 4^{x+3}*(0.5)^(3-2x)=(1/8)^-x | | Y=7x-1/2x-3 | | 4(4/5x+1)=x+24/5/2 | | Y=7x+1/2x-3 | | 5x-12=5+x | | 6(2x-5)=7x-15 | | 2x+4*6=10 | | 8+1v=26 | | 1/6x+7=24 | | X^2–10x+3=0 | | 1/2(4x+8)=-12 | | 3x+3x=-66 | | 4/x+3x+5/2x=6 | | 2x-5x+7=0 | | 3x+4.5(x-3)=61.5 | | 10x=3.2-x=0.32 | | 6x2-25x-9=0 | | 1/3x+5=1/4 | | x+1/7+23-x/5=7-4+x/4 | | 3x-2/4-4-x/2=2x-7x-2/3 | | 3x/4-1/5+2x=5x/4-3x/20 | | |2x-6|=16 | | x2+14x=21 |